Skip to main content

C Program To Implement Binary Search Tree Operations.

A binary search tree (BST), also known as an ordered binary tree, is a node-based data structure in which each node has no more than two child nodes. Each child must either be a leaf node or the root of another binary search tree. The left sub-tree contains only nodes with keys less than the parent node; the right sub-tree contains only nodes with keys greater than the parent node.

Example: Insert 20 into the Binary Search Tree. Tree is not available. So create root node and place 20 into it.

                                                   20

Insert 23 into the given Binary Search Tree. Since 23 > 20, then 23 will be inserted in the right sub-tree of 20.

                                                    20
                                                        \
                                                         23

Insert 13 into the given Binary Search Tree.  Since 13 < 20, then 13 will be inserted in left sub-tree of 20.

                                                   20
                                                 /     \
                                              13       23

Insert 9 into the given Binary Search Tree.

                                                   20
                                                 /     \
                                              13       23
                                             /
                                           9
Inserting 14:
                                                   20
                                                 /     \
                                              13       23
                                             /    \  
                                           9      14

Inserting 19:
                                                   20
                                                 /     \
                                              13       23
                                             /    \  
                                           9      14
                                                     \
                                                      19
Inserting 21:

                                                    20
                                                 /      \
                                              13        23
                                             /    \      /
                                           9      14  21 
                                                     \
                                                      19
Inserting 27:

                                                    20
                                                 /      \
                                              13        23
                                             /    \      /  \
                                           9      14  21  27
                                                     \
                                                      19
Inserting 24:
                                                    20
                                                 /      \
                                              13        23
                                             /    \      /  \
                                           9      14  21  27
                                                     \       /
                                                      19  24

Deletion in Binary Search Tree: There are three different cases that needs to be considered for deleting a node from binary search tree.

case 1: Node with no children (or) leaf node
case 2: Node with one child
case 3: Node with two children.
                                                    20
                                                 /      \
                                              13        23
                                             /    \      /  \
                                           9      14  21  27
                                                     \       /
                                                      19  24

Case 1: Delete a leaf node/ node with no children.

                                                    20
                                                 /      \
                                              13        23
                                             /    \      /  \
                                           9      14  21  27
                                                     \       /
                                                      19  24

Delete 24 from the above binary search tree.

                                                    20
                                                 /      \
                                              13        23
                                             /    \      /  \
                                           9      14  21  27
                                                     \     
                                                      19

Case 2: Delete a node with one child.

                                                    20
                                                 /      \
                                              13        23
                                             /    \      /  \
                                           9      14  21  27
                                                     \       /
                                                      19  24

Delete 14 from above binary search tree.

                                                    20
                                                 /      \
                                              13        23
                                             /    \      /  \
                                           9      19  21  27
                                                             /
                                                           24

Case 3: Delete a node with two children.
Delete a node whose right child is the smallest node in the right sub-tree. (14 is the smallest node present in the right sub-tree of 13).

                                                    20
                                                 /      \
                                              13        23
                                             /    \      /  \
                                           9      14  21  27
                                                     \       /
                                                      19  24

Delete 13 from the above binary tree. Find the smallest in the left sub-tree of 13, so replace 13 with 14.
                                                    20
                                                 /      \
                                              14        23
                                             /   \       /  \
                                           9      19  21  27
                                                             /
                                                          24

Delete 20 from the below binary search tree.

                                                    20
                                                 /      \
                                              13        23
                                             /    \      /  \
                                           9      14  21  27
                                                          \
                                                          22

Find the smallest node in the right sub-tree of 20. And that smallest node is 21, so replace 20 with 21. Since 21 has only one child (22), the pointer currently pointing to 21 is made to point to 22, so the resultant binary tree would be: 

                                                    21
                                                 /      \
                                              13        23
                                             /    \     /  \
                                           9      14       27
                                                          \
                                                          22

                                                    21
                                                 /      \
                                              13        23
                                             /    \     /   \
                                           9      14  22   27

Source code (BST operations) :
#include<stdio.h>
#include<stdlib.h>

struct tree {
int info;
struct tree *left;
struct tree *right; 
};

struct tree *insert(struct tree *,int);
void inorder(struct tree *);
void postorder(struct tree *);
void preorder(struct tree *);
struct tree *delet(struct tree *,int);
struct tree *search(struct tree *);

int main(void) {

struct tree *root;
int choice, item,item_no;
root = NULL;
printf("\n******* BINARY SEARCH TREE OPERATIONS *******\n\n");

do {
do {
printf("\n\t 1. INSERTION ");
printf("\n\t 2. DELETION ");
printf("\n\t 3. INORDER TRAVERSAL");
printf("\n\t 4. POSTORDER TRAVERSAL");
printf("\n\t 5. PREORDER TRAVERSAL");
printf("\n\t 6. SEARCH AND REPLACE");
printf("\n\t 7. EXIT ");
printf("\n\n ENTER YOUR CHOICE : ");
scanf(" %d",&choice);

if(choice<1 || choice>7)
printf("\n INVALID CHOICE - TRY AGAIN \n");
}

while (choice<1 || choice>7);
switch(choice)
{
case 1:
printf("\n ENTER NEW ELEMENT: ");
scanf("%d", &item);
root= insert(root,item);
printf("\n ROOT NODE : %d\n",root->info);
printf("\n UPDATED BINARY TREE (INORDER TRAVERSAL): ");
inorder(root);
printf("\n");
break;

case 2:
printf("\n ENTER THE ELEMENT TO BE DELETED : ");
scanf(" %d",&item_no);
root=delet(root,item_no);
printf("\n ROOT NODE : %d\n",root->info);
printf("\n UPDATED BINARY TREE (INORDER TRAVERSAL): ");
inorder(root);
printf("\n");
break;

case 3:
printf("\n INORDER TRAVERSAL OF BINARY TREE: ");
inorder(root);
printf("\n");
break;

case 4:
printf("\n POSTORDER TRAVERSAL OF BINARY TREE: ");
postorder(root);
printf("\n");
break;

case 5:
printf("\n PREORDER TRAVERSAL OF BINARY TREE: ");
preorder(root);
printf("\n");
break;

case 6:
root=search(root);
printf("\n");
break;
default:
printf("\n\t\t\tEND OF PROGRAM \n");
}}

while(choice !=7);
return(0);
}

struct tree *insert(struct tree *root, int x)
{
if(!root)
{
root=(struct tree*)malloc(sizeof(struct tree));
root->info = x;
root->left = NULL;
root->right = NULL;
return(root);
}

if(root->info > x)
root->left = insert(root->left,x);

else {
if(root->info < x)
root->right = insert(root->right,x);
}
return(root);
}

void inorder(struct tree *root) {
if(root != NULL) {
inorder(root->left);

printf(" %d",root->info);
inorder(root->right);
}
return;
}

void postorder(struct tree *root) {
if(root != NULL)
{
postorder(root->left);
postorder(root->right);
printf(" %d",root->info);
}
return;
}

void preorder(struct tree *root) {
if(root != NULL)
{
printf(" %d",root->info);
preorder(root->left);
preorder(root->right);
}
return;
}

struct tree *delet(struct tree *ptr,int x) {
struct tree *p1,*p2;

if(!ptr) {
printf("\n ELEMENT NOT FOUND \n");
return(ptr);
}

else {
if(ptr->info < x) {
ptr->right = delet(ptr->right,x);
}

else if (ptr->info >x) {
ptr->left=delet(ptr->left,x);
return ptr;
}

else  {
if(ptr->info == x) {

if(ptr->left == ptr->right) {
free(ptr);
return(NULL);
}

else if(ptr->left==NULL) {
p1=ptr->right;
free(ptr);
return p1;
}

else if(ptr->right==NULL) {
p1=ptr->left;
free(ptr);
return p1;
}

else {
p1=ptr->right;
p2=ptr->right;

while(p1->left != NULL)
p1=p1->left;
p1->left=ptr->left;

free(ptr);
return p2;
}}}}

return(ptr);
}

struct tree *search(struct tree *root) {
int no,i,ino;
struct tree *ptr;
ptr=root;

printf("\n ENTER THE ELEMENT TO BE SEARCHED : ");
scanf(" %d",&no);
fflush(stdin);

while(ptr) {
if(no>ptr->info)
ptr=ptr->right;

else if(no<ptr->info)
ptr=ptr->left;
else break;
}

if(ptr) {
printf("\n ELEMENT %d WAS FOUND ",no);
printf("\n\n DO YOU WANT TO REPLACE IT, PRESS 1 FOR YES : ");
scanf(" %d",&i);

if(i==1) {
printf("\n\n ENTER NEW ELEMENT : ");
scanf(" %d",&ino);
ptr->info=ino;
}

else
printf("\n IT'S OKAY! \n");
}

else
printf("\n ELEMENT %d DOES NOT EXIST IN THE BINARY TREE \n",no);
return(root);
}

Popular posts from this blog

Screenshots from Windows 1.01

Windows 1.0 is a graphical personal computer operating environment developed by Microsoft, released on November 20, 1985, as the first version of the Microsoft Windows line. Version 1.01 , also released in 1985, was the first point-release after Windows 1.00.   Screenshots from Windows 1.01: ⇰ Desktop  First Run Empty Desktop Desktop With Applications ⇰  Office Applications Notepad Text Editor Calculator Calendar Clock Address Book ⇰  Multimedia Applications Media player, CD player, Volume level, and Sound: This GUI doesn’t have these features. ⇰  Networking Applications Terminal Phone Dialer: This GUI doesn’t have this feature. ⇰  Internet Applications Browser, and Mail: This GUI doesn’t have these features. ⇰  Accessibility Applications Keyboard Map:  This GUI doesn’t have this feature. ⇰  Settings Desktop themes,  Display,  S...

C++ Program To Implement Casino Number Guessing Game.

#include <iostream> #include <string> #include <cstdlib> #include <ctime> using namespace std; void drawLine(int n, char symbol); void rules(); int main() { string playerName; int amount; int bettingAmount; int guess; int dice; char choice; srand(time(0)); drawLine(70,'_'); cout << "\n\n\n\t\tCASINO GAME\n\n\n\n"; drawLine(70,'_'); cout << "\n\nEnter Your Name : "; getline(cin, playerName); cout << "\n\nEnter Deposit Amount To Play Game : $"; cin >> amount;

Introduction To Algorithms, 3rd Edition

Before there were computers, there were algorithms. But now that there are computers, there are even more algorithms, and algorithms lie at the heart of computing. This book provides a comprehensive introduction to the modern study of computer algorithms. It presents many algorithms and covers them in considerable depth, yet makes their design and analysis accessible to all levels of readers. In this book, the authors tried to keep explanations elementary without sacrificing depth of coverage or mathematical rigor. Each chapter presents an algorithm, a design technique, an application area, or a related topic. Algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The book contains 244 figures — many with multiple parts — illustrating how the algorithms work. It also includes careful analysis of the running times of all algorithms. In this third edition, the entire book once again updated including changes cove...

The C Programming Language, 2nd Edition*

This book is meant to help the reader learn how to program in C. It is the definitive reference guide, now in a second edition. Although the first edition was written in 1978, it continues to be a worldwide best-seller. This second edition brings the classic original up to date to include the ANSI standard. For evolution of the planet earth and our modern understanding of biology, there was Darwin's Origin of the Species. For mathematics, there was Newton's PhilosophiƦ Naturalis Principia Mathematica. Well, for the internet, for Facebook, for LinkedIn, Twitter, Instgram, Snapchat, WhatsApp, Pornhub and even the odious website for Justin Bieber would never have existed without Kernigan and Ritchie (more affectionately known as K&R)'s classic, The C Programming Language. What language was TCP/IP written in? C. What language inspired both C++ and Java (and the abominable C#)? C. What language are most libraries on most operating systems written in if not assembler? C. ...