Skip to main content

C Program To Implement AVL Tree Operations.

The AVL tree is a self-balancing binary search tree in which the heights of the two child sub-trees of any node differ by at most one. If at any time they differ by more than one, rebalancing is done by one or more tree rotations to restore this property. Basic operations such as lookup, insertion, deletion all take O(log n) time in both the average and worst cases, where n is the number of nodes in the tree prior to the operation.


There are four ways to rotate nodes in an AVL tree
(graphically represented):

single rotation

double rotation


Inserting Nodes In The AVL Tree Is Graphically Represented:

insertion 1

insertion 2

insertion 3



Deleting Nodes From The AVL Tree Is Graphically Represented:

deletion 1

deletion 2

Source Code of AVL tree:
Method 1:
#include <stdio.h>
#include <stdlib.h>

struct AVLTree_Node {
int data, bfactor;
struct AVLTree_Node *link[2];
};

struct AVLTree_Node *root = NULL;

struct AVLTree_Node * createNode(int data) {
struct AVLTree_Node *newnode;
newnode = (struct AVLTree_Node *)malloc(sizeof (struct AVLTree_Node));

newnode->data    = data;
newnode->bfactor = 0;
newnode->link[0] = newnode->link[1] = NULL;
return newnode;
}

void insertion (int data) {
struct AVLTree_Node *bf, *parent_bf, *subtree, *temp;
struct AVLTree_Node *current, *parent, *newnode, *ptr;
int res = 0, link_dir[32], i = 0;

if (!root) {
root = createNode(data);
return;
}

bf = parent_bf = root;

/* find the location for inserting the new node*/
for (current = root; current != NULL; ptr = current, current = current->link[res]) {
if (data == current->data) {
printf("\nDuplicates Are Not Allowed!\n");
return;
}

res = (data > current->data) ? 1 : 0;
parent = current;

if (current->bfactor != 0) {
bf = current;
parent_bf = ptr;
i = 0;
}
link_dir[i++] = res;
}

/* create the new node */
newnode = createNode(data);
parent->link[res] = newnode;
res = link_dir[i = 0];

/* updating the height balance after insertion */
for (current = bf; current != newnode; res = link_dir[++i])
{
if (res == 0)
current->bfactor--;
else
current->bfactor++;
current = current->link[res];
}

/* right sub-tree */
if (bf->bfactor == 2) {
printf("bfactor = 2\n");
temp = bf->link[1];

if (temp->bfactor == 1) {
subtree = temp;
bf->link[1] = temp->link[0];
temp->link[0] = bf;
temp->bfactor = bf->bfactor = 0;
}

else {
subtree = temp->link[0];
temp->link[0] = subtree->link[1];
subtree->link[1] = temp;
bf->link[1] = subtree->link[0];
subtree->link[0] = bf;

/* update balance factors */
if (subtree->bfactor == -1) {
bf->bfactor = 0;
temp->bfactor = 1;
}

else if (subtree->bfactor == 0) {
bf->bfactor = 0;
temp->bfactor = 0;
}

else if (subtree->bfactor == 1) {
bf->bfactor = -1;
temp->bfactor = 0;
}
subtree->bfactor = 0;
}}

/* left sub-tree */
else if (bf->bfactor == -2) {
temp = bf->link[0];

if (temp->bfactor == -1) {
subtree = temp;
bf->link[0] = temp->link[1];
temp->link[1] = bf;
temp->bfactor = bf->bfactor = 0;
}

else {
subtree = temp->link[1];
temp->link[1] = subtree->link[0];
subtree->link[0] = temp;
bf->link[0] = subtree->link[1];
subtree->link[1] = bf;

/* update balance factors */
if (subtree->bfactor == -1) {
bf->bfactor = 1;
temp->bfactor = 0;
}

else if (subtree->bfactor == 0) {
bf->bfactor = 0;
temp->bfactor = 0;
}

else if (subtree->bfactor == 1) {
bf->bfactor = 0;
temp->bfactor = -1;
}
subtree->bfactor = 0;
}}

else {
return;
}

if (bf == root) {
root = subtree;
return;
}

if (bf != parent_bf->link[0]) {
parent_bf->link[1] = subtree;
}

else {
parent_bf->link[0] = subtree;
}
return;
}

void deletion(int data) {
int link_dir[32], res = 0, i = 0, j = 0, index = 0;
struct AVLTree_Node *ptr[32], *current, *temp, *x, *y, *z;

current = root;
if (!root) {
printf("\nAVL Tree Was Not Found!");
return;
}

if ((root->data == data) && (root->link[0] == NULL)
&& (root->link[1] == NULL)) {
free(root);
root = NULL;
return;
}

/* search the node to delete */
while (current != NULL) {
if (current->data == data)
break;

res = data > current->data ? 1 : 0;
link_dir[i] = res;
ptr[i++] = current;
current = current->link[res];
}

if (!current) {
printf("\nGiven Data Was Not Found!");
return;
}

index = link_dir[i - 1];
temp = current->link[1];

/* delete the node from the AVL tree - similar to BST deletion */
if (current->link[1] == NULL) {

if (i == 0) {
temp = current->link[0];
free(current);
root = temp;
return;
}

else {
ptr[i - 1]->link[index] = current->link[0];
}}

else if (temp->link[0] == NULL) {
temp->link[0] = current->link[0];
temp->bfactor = current->bfactor;
if (i > 0) {
ptr[i-1]->link[index] = temp;
}

else {
root = temp;
}

link_dir[i] = 1;
ptr[i++] = temp;
}

else {
/* delete node with two children */
j = i++;

while (1) {
link_dir[i] = 0;
ptr[i++] = temp;
x = temp->link[0];

if (x->link[0] == NULL)
break;
temp = x;
}

x->link[0] = current->link[0];
temp->link[0] = x->link[1];
x->link[1] = current->link[1];
x->bfactor = current->bfactor;

if (j > 0) {
ptr[j - 1]->link[index] = x;
}

else {
root = x;
}
link_dir[j] = 1;
ptr[j] = x;
}

free(current);
for (i = i - 1; i >= 0; i = i--) {
x = ptr[i];

if (link_dir[i] == 0) {
x->bfactor++;

if (x->bfactor == 1) {
break;
}

else if (x->bfactor == 2) {
y = x->link[1];

if (y->bfactor == -1) {
/* double rotation - (SR right + SR left) */
z = y->link[0];
y->link[0] = z->link[1];

z->link[1] = y;
x->link[1] = z->link[0];
z->link[0] = x;

/* update balance factors */
if (z->bfactor == -1) {
x->bfactor = 0;
y->bfactor = 1;
}

else if (z->bfactor == 0) {
x->bfactor = 0;
y->bfactor = 0;
}

else if (z->bfactor == 1) {
x->bfactor = -1;
y->bfactor = 0;
}

z->bfactor = 0;

if (i > 0) {
index = link_dir[i - 1];
ptr[i - 1]->link[index] = z;
}

else {
root = z;
}}

else {
/* single rotation left */
x->link[1] = y->link[0];
y->link[0] = x;

if (i > 0) {
index = link_dir[i - 1];
ptr[i - 1]->link[index] = y;
}

else  {
root = y;
}

/* update balance factors */
if (y->bfactor == 0) {
x->bfactor = 1;
y->bfactor = -1;
break;
}

else {
x->bfactor = 0;
y->bfactor = 0;
}}}}

else {
x->bfactor--;
if (x->bfactor == -1) {
break;
}

else if (x->bfactor == -2) {
y = x->link[0];

if  (y->bfactor == 1) {
/* double rotation - (SR right + SR left) */
z = y->link[1];
y->link[1] = z->link[0];

z->link[0] = y;
x->link[0] = z->link[1];
z->link[1] = x;

/* update balance factors */
if (z->bfactor == -1) {
x->bfactor = 1;
y->bfactor = 0;
}

else if (z->bfactor == 0) {
x->bfactor = 0;
y->bfactor = 0;
}

else if (z->bfactor == 1) {
x->bfactor = 0;
y->bfactor = -1;
}

z->bfactor = 0;
if (i > 0) {
index = link_dir[i - 1];
ptr[i - 1]->link[index] = z;
}

else {
root = z;
}}

else {
/* single rotation right */
x->link[0] = y->link[1];
y->link[1] = x;

if (i <= 0) {
root = y;
}

else {
index = link_dir[i - 1];
ptr[i - 1]->link[index] = y;
}

/* update balance factors */
if (y->bfactor == 0) {
x->bfactor = -1;
y->bfactor = 1;
break;
}

else {
x->bfactor = 0;
y->bfactor = 0;
}}}}}}

void searchElement(int data) {
int flag = 0, res = 0;
struct AVLTree_Node *node = root;

if (!node) {
printf("\nAVL Tree Was Not Found!");
return;
}

while (node != NULL) {
if (data == node->data) {
printf("\nOk! %d Present In AVL Tree.\n", data);
flag = 1;
break;
}

res = data > node->data ? 1 : 0;
node = node->link[res];
}

if (!flag)
printf("\nGosh! %d Was Not Found In AVL Tree.\n", data);
return;
}

void inorderTraversal(struct AVLTree_Node *myNode) {
if (myNode) {
inorderTraversal(myNode->link[0]);

printf("%d  ", myNode->data);
inorderTraversal(myNode->link[1]);
}
return;
}

int main() {
int key, ch;

while (1) {
printf("\n\t1. Insertion\t2. Deletion\n");
printf("\t3. Searching\t4. Traversal\n");
printf("\t5. Exit \n\nEnter Your Choice: ");
scanf("%d", &ch);

switch (ch) {
case 1:
printf("\nEnter The Value: ");
scanf("%d", &key);
insertion(key);
break;

case 2:
printf("\nEnter The Value To Delete: ");
scanf("%d", &key);
deletion(key);
break;

case 3:
printf("\nEnter The Value: ");
scanf("%d", &key);
searchElement(key);
break;

case 4:
printf("\nThe Current AVL Tree: ");
inorderTraversal(root);
printf("\n");
break;

case 5:
exit(0);
default:
printf("\nWrong Option!");
break;
}
printf("\n");
}
return 0;
}

Method 2:
#include<stdio.h>
#include<malloc.h>

typedef struct bst {
int info;
int height;

struct bst *left;
struct bst *right;
} NODE;

typedef NODE* ROOT;

// For setting and updating the height of the tree at each node
int set_height(ROOT r) {
int left_h = -1;
int right_h = -1;

if(r->left)
left_h = r->left->height;

if(r->right)
right_h = r->right->height;

if(left_h >= right_h)
r->height = left_h+1;

else
r->height = right_h+1;
return r->height;
}

int compare(int data1, int data2) {
if(data1<data2)
return -1;

if(data1>data2)
return 1;

else
return 0;
}

// Doing Left-Left rotation
void rotate_LL(ROOT *r) {
NODE *r1, *r2 = *r,*t1,*t2,*t3;

r1 = r2->left;
t1 = r1->left;
t2 = r1->right;
t3 = r2->right;

// Actual rotation happens here
r1->right = r2;
r2->left = t2;

// Update the r1 , r2 height
set_height(r1);
set_height(r2);

*r = r1;
}

// Doing Right-Left rotation
void rotate_RL(ROOT *r) {
NODE *r1,*r2, *r3=*r,*t1,*t2,*t3,*t4;

r1 = r3->left;
r2 = r1->right;
t2 = r2->left;
t3 = r2->right;

// Actaul rotation happens here
r1->right = t2;
r3->left = t3;
r2->left = r1;
r2->right = r3;

// Updte the new heihts for r1, r2, r3
set_height(r1);
set_height(r2);
set_height(r3);

*r = r2;
}

// Doing Left-Right rotation
void rotate_LR(ROOT *r) {
NODE *r1=*r, *r2,*r3,*t1,*t2,*t3,*t4;

r3 = r1->right;
r2 = r3->left;
t2 = r2->left;
t3 = r2->right;

// Actaul rotation happens here
r1->right = t2;
r3->left = t3;
r2->left = r1;
r2->right = r3;

// Updte the new heihts for r1, r2, r3
set_height(r1);
set_height(r2);
set_height(r3);

*r = r2;
}

// Doing Right-Right rotation
void rotate_RR(ROOT *r) {
NODE *r1=*r,*r2,*t1,*t2,*t3;

r2 = r1->right;
t1 = r1->left;
t2 = r2->left;
t3 = r2->right;

// Actaul rotation happens here
r1->right = t2;
r2->left = r1;

set_height(r1);
set_height(r2);

*r = r2;
}

// It will return rotation type.
int find_rotation_type(int parent_data, int child_data, int data) {
if(compare(data, parent_data)<0) {

if(compare(data, child_data)<0)
return 1;

else if(compare(data, child_data)==0)
return 0;

else
return 2;
}

else {
if(compare(data, child_data)>0)
return 4;

else if(compare(data, child_data)==0)
return 0;

else
return 3;
}}

// Calling the corresponding AVL-rotation method
void do_rotation(ROOT *r, int rotation_type) {

if(rotation_type == 1)
rotate_LL(r);

else if(rotation_type == 2)
rotate_RL(r);

else if(rotation_type == 3)
rotate_LR(r);

else if(rotation_type == 4)
rotate_RR(r);

else
printf("\n\nInvalid Rotation Type.");
}

int insert(ROOT *r, int data) {
NODE *new_node, *root = *r;
int left_h = -1, right_h = -1;
int diff,rotation_type;

// Tree is empty
if(root == NULL) {
new_node = (NODE *)malloc(sizeof(NODE));
new_node->info = data;

new_node->height = 0;
new_node->left = new_node->right = NULL;
*r = new_node;
return 0;
}

if(root->left)
left_h = root->left->height;
if(root->right)
right_h = root->right->height;

if(compare(data, root->info)<0) {
left_h = insert(&(root->left), data);
rotation_type = find_rotation_type(root->info, root->left->info, data);
}

else if(compare(data, root->info)>0) {
right_h = insert(&(root->right), data);
rotation_type = find_rotation_type(root->info, root->right->info, data);
}

else {
printf("\nYou Already Used This Number!!\n\n");
return -1;
}

diff = left_h-right_h;

if(diff>1 || diff<-1) {
printf("\nTree Is Unbalanced At Node Data %d", root->info);

if(rotation_type == 1)
printf("\nNeed To Do LL Rotation\n");

if(rotation_type == 2)
printf("\nNeed To Do RL Rotation\n");

if(rotation_type == 3)
printf("\nNeed To Do LR Rotation\n");

if(rotation_type == 4)
printf("\nNeed To Do RR Rotation\n");

// This call is for doing rotation
do_rotation(r,rotation_type);

printf("\nRotation Done Successfully. \n\n");
root = *r;
}

// Set the height for the node and return the height
return set_height(root);
}

// Printing In-Order traversal of AVL Tree
void print_inorder(NODE *root) {
NODE *temp = root;

if(temp) {
print_inorder(temp->left);
printf("%d ",temp->info);
print_inorder(temp->right);
}}

// Printing Pre-Order traversal of AVL Tree
void print_preorder(NODE *root) {
NODE *temp = root;

if(temp) {
printf("%d ",temp->info);
print_preorder(temp->left);
print_preorder(temp->right);
}}

// Printing Post-Order traversal of AVL Tree
void print_postorder(NODE *root) {
NODE *temp = root;

if(temp) {
print_postorder(temp->left);
print_postorder(temp->right);
printf("%d ",temp->info);
}}

int main() {
ROOT r = NULL;
int i,num,data,choice;

printf("Enter How Many Numbers You Want To Insert: ");
scanf("%d",&num);
printf("\nEnter The Numbers: ");

for(i=0;i<num;i++) {
scanf("%d",&data);
insert(&r,data);
}

printf("\n\t1. Insert \t2. In-Order\n\t3. Pre-Order\t4. Post-Order\n\t5. Height Of The Tree \n\t6. Exit\n");
printf("\nEnter Your Choice: ");
scanf("%d",&choice);

while(1) {
switch(choice) {
case 1:
printf("\nEnter The Number: ");
scanf("%d",&data);
insert(&r,data);
break;

case 2:
printf("\nInorder Traversal: ");
print_inorder(r);
printf("\n");
break;

case 3:
printf("\nPreorder Traversal: ");
print_preorder(r);
printf("\n");
break;

case 4:
printf("\nPostorder Traversal: ");
print_postorder(r);
printf("\n");
break;

case 5:
//height of the root node height is heoght of the tree  
printf("\nHeight Of The Tree: %d\n",r->height);
break;
default:

return 0;
break;
}

printf("\n\t1. Insert \t2. In-Order\n\t3. Pre-Order\t4. Post-Order\n\t5. Height Of The Tree \n\t6. Exit\n");

printf("\nEnter Your Choice: ");
scanf("%d",&choice);
}} 

Popular posts from this blog

Screenshots from Windows 1.01

Windows 1.0 is a graphical personal computer operating environment developed by Microsoft, released on November 20, 1985, as the first version of the Microsoft Windows line. Version 1.01 , also released in 1985, was the first point-release after Windows 1.00.   Screenshots from Windows 1.01: ⇰ Desktop  First Run Empty Desktop Desktop With Applications ⇰  Office Applications Notepad Text Editor Calculator Calendar Clock Address Book ⇰  Multimedia Applications Media player, CD player, Volume level, and Sound: This GUI doesn’t have these features. ⇰  Networking Applications Terminal Phone Dialer: This GUI doesn’t have this feature. ⇰  Internet Applications Browser, and Mail: This GUI doesn’t have these features. ⇰  Accessibility Applications Keyboard Map:  This GUI doesn’t have this feature. ⇰  Settings Desktop themes,  Display,  S...

C++ Program To Implement Casino Number Guessing Game.

#include <iostream> #include <string> #include <cstdlib> #include <ctime> using namespace std; void drawLine(int n, char symbol); void rules(); int main() { string playerName; int amount; int bettingAmount; int guess; int dice; char choice; srand(time(0)); drawLine(70,'_'); cout << "\n\n\n\t\tCASINO GAME\n\n\n\n"; drawLine(70,'_'); cout << "\n\nEnter Your Name : "; getline(cin, playerName); cout << "\n\nEnter Deposit Amount To Play Game : $"; cin >> amount;

The C Programming Language, 2nd Edition*

This book is meant to help the reader learn how to program in C. It is the definitive reference guide, now in a second edition. Although the first edition was written in 1978, it continues to be a worldwide best-seller. This second edition brings the classic original up to date to include the ANSI standard. For evolution of the planet earth and our modern understanding of biology, there was Darwin's Origin of the Species. For mathematics, there was Newton's PhilosophiƦ Naturalis Principia Mathematica. Well, for the internet, for Facebook, for LinkedIn, Twitter, Instgram, Snapchat, WhatsApp, Pornhub and even the odious website for Justin Bieber would never have existed without Kernigan and Ritchie (more affectionately known as K&R)'s classic, The C Programming Language. What language was TCP/IP written in? C. What language inspired both C++ and Java (and the abominable C#)? C. What language are most libraries on most operating systems written in if not assembler? C. ...

Java Tutorial For Beginners: Part 2.

Problem: Java Program To Solve Tower Of Hanoi Problem Using Stacks import java.util.*; public class TowerOfHanoiUsingStacks { public static int N; @SuppressWarnings("unchecked") public static Stack<Integer>[] tower = new Stack[4]; public static void main(String[] args) { Scanner scan = new Scanner(System.in); tower[1] = new Stack<Integer>(); tower[2] = new Stack<Integer>(); tower[3] = new Stack<Integer>(); System.out.print("Enter The Number Of Disks: "); int num = scan.nextInt(); N = num; toh(num); scan.close(); } /* Function to push disks into stack */ public static void toh(int n) { for (int d = n; d > 0; d--) tower[1].push(d); display(); move(n, 1, 2, 3); }

How Are The Web Pages Written?

Web pages are written in HTML, the web programming language that tells web browsers how to structure and present content on a web page. In other words, HTML provides the basic building blocks for the web. And for a long time, those building blocks were pretty simple and static: lines of text, links, and images. Today, we expect to be able to do things like play online chess or seamlessly scroll around a map of our neighborhood, without waiting for the entire page to reload for every chess move or every map scroll. The idea of such dynamic web pages began with the invention of the scripting language JavaScript. JavaScript support in major web browsers meant that web pages could incorporate more meaningful real-time interactions. For example, if you have filled out an online form and hit the “submit” button, the web page can use JavaScript to check your entries in real-time and alert you almost instantly if you had filled out the form incorrectly. But the dynamic web as we ...