Skip to main content

Java Program To Implement Self-Balancing Binary Search Tree.

import java.util.Scanner;

class SBBSTNode {
SBBSTNode left, right;
int data;
int height;

public SBBSTNode() {
left = null;
right = null;
data = 0;
height = 0;
}

public SBBSTNode(int n) {
left = null;
right = null;
data = n;
height = 0;
}}

class SelfBalancingBST {
private SBBSTNode root;    

public SelfBalancingBST() {
root = null;
}

public boolean isEmpty() {
return root == null;
}

public void clear() {
root = null;
}

public void insert(int data) {
root = insert(data, root);
}

private int height(SBBSTNode t ) {
return t == null ? -1 : t.height;
}

private int max(int lhs, int rhs) {
return lhs > rhs ? lhs : rhs;
}

private SBBSTNode insert(int x, SBBSTNode t) {
if (t == null)
t = new SBBSTNode(x);

else if (x < t.data) {
t.left = insert( x, t.left );

if (height( t.left ) - height( t.right ) == 2)
if (x < t.left.data)
t = rotateWithLeftChild( t );

else
t = doubleWithLeftChild( t );
}

else if (x > t.data) {
t.right = insert( x, t.right );

if (height( t.right ) - height( t.left ) == 2)
if (x > t.right.data)
t = rotateWithRightChild( t );

else
t = doubleWithRightChild( t );
}

else
;  // duplicate; do nothing
t.height = max( height( t.left ), height( t.right ) ) + 1;
return t;
}

private SBBSTNode rotateWithLeftChild(SBBSTNode k2) {
SBBSTNode k1 = k2.left;
k2.left = k1.right;
k1.right = k2;

k2.height = max( height( k2.left ), height( k2.right ) ) + 1;
k1.height = max( height( k1.left ), k2.height ) + 1;
return k1;
}

private SBBSTNode rotateWithRightChild(SBBSTNode k1) {
SBBSTNode k2 = k1.right;
k1.right = k2.left;

k2.left = k1;
k1.height = max( height( k1.left ), height( k1.right ) ) + 1;
k2.height = max( height( k2.right ), k1.height ) + 1;
return k2;
}

private SBBSTNode doubleWithLeftChild(SBBSTNode k3) {
k3.left = rotateWithRightChild( k3.left );
return rotateWithLeftChild( k3 );
}

private SBBSTNode doubleWithRightChild(SBBSTNode k1) {
k1.right = rotateWithLeftChild( k1.right );
return rotateWithRightChild( k1 );
}

public int countNodes() {
return countNodes(root);
}

private int countNodes(SBBSTNode r) {

if (r == null)
return 0;

else {
int l = 1;
l += countNodes(r.left);
l += countNodes(r.right);
return l;
}}

public boolean search(int val) {
return search(root, val);
}

private boolean search(SBBSTNode r, int val) {
boolean found = false;

while ((r != null) && !found) {
int rval = r.data;

if (val < rval)
r = r.left;

else if (val > rval)
r = r.right;

else {
found = true;
break;
}

found = search(r, val);
}
return found;
}

public void inorder() {
inorder(root);
}

private void inorder(SBBSTNode r) {
if (r != null) {
inorder(r.left);

System.out.print(r.data +" ");
inorder(r.right);
}}

public void preorder() {
preorder(root);
}

private void preorder(SBBSTNode r) {
if (r != null) {
System.out.print(r.data +" ");

preorder(r.left);
preorder(r.right);
}}

public void postorder() {
postorder(root);
}

private void postorder(SBBSTNode r) {
if (r != null) {
postorder(r.left);

postorder(r.right);
System.out.print(r.data +" ");
}}}

public class BSTTest {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);

SelfBalancingBST sbbst = new SelfBalancingBST();
char ch;

do {
System.out.println("\nSelf Balancing Binary Search Tree Operations: \n");
System.out.println("1. Insert ");
System.out.println("2. Search");
System.out.println("3. Count Nodes");
System.out.println("4. Check Empty");
System.out.println("5. Clear Tree");
System.out.print("Enter Your Choice: ");

int choice = scan.nextInt();
switch (choice) {

case 1 :
System.out.print("Enter An Integer To Insert: ");
sbbst.insert( scan.nextInt() );
break;

case 2 :
System.out.print("Enter An Integer To Search: ");
System.out.println("Search Result : "+ sbbst.search( scan.nextInt() ));
break;

case 3 :
System.out.println("Nodes = "+ sbbst.countNodes());
break;

case 4 :
System.out.println("Empty Status = "+ sbbst.isEmpty());
break;

case 5 :
System.out.println("\nTree Cleared");
sbbst.clear();
break;

default :
System.out.println("Wrong Entry ");
break;
}

System.out.print("\nPost Order : ");
sbbst.postorder();
System.out.print("\nPre Order : ");
sbbst.preorder();
System.out.print("\nIn Order : ");
sbbst.inorder();

System.out.println("\n\nDo You Want To Continue (Type Y OR N): ");
ch = scan.next().charAt(0);
} while (ch == 'Y'|| ch == 'y');
scan.close();

}}

Popular posts from this blog

Screenshots from Windows 1.01

Windows 1.0 is a graphical personal computer operating environment developed by Microsoft, released on November 20, 1985, as the first version of the Microsoft Windows line. Version 1.01 , also released in 1985, was the first point-release after Windows 1.00.   Screenshots from Windows 1.01: ⇰ Desktop  First Run Empty Desktop Desktop With Applications ⇰  Office Applications Notepad Text Editor Calculator Calendar Clock Address Book ⇰  Multimedia Applications Media player, CD player, Volume level, and Sound: This GUI doesn’t have these features. ⇰  Networking Applications Terminal Phone Dialer: This GUI doesn’t have this feature. ⇰  Internet Applications Browser, and Mail: This GUI doesn’t have these features. ⇰  Accessibility Applications Keyboard Map:  This GUI doesn’t have this feature. ⇰  Settings Desktop themes,  Display,  S...

C Program To Check Whether A Number Is Palindrome Or Not.

This program takes an integer from user and the integer is reversed. If the reversed integer is equal to the integer entered by user then that number is a palindrome. If not that number is not a palindrome.   #include <stdio.h> int main()  { int num, temp, remainder, reverse = 0; printf("Enter an integer: "); scanf("%d", &num); /*  original number is stored at temp */ temp = num; while (num > 0)  { remainder = num % 10; reverse = reverse * 10 + remainder; num /= 10;   }

C++ Program To Implement Casino Number Guessing Game.

#include <iostream> #include <string> #include <cstdlib> #include <ctime> using namespace std; void drawLine(int n, char symbol); void rules(); int main() { string playerName; int amount; int bettingAmount; int guess; int dice; char choice; srand(time(0)); drawLine(70,'_'); cout << "\n\n\n\t\tCASINO GAME\n\n\n\n"; drawLine(70,'_'); cout << "\n\nEnter Your Name : "; getline(cin, playerName); cout << "\n\nEnter Deposit Amount To Play Game : $"; cin >> amount;

C Program To Convert Natural Numbers To Roman Numerals.

Roman Number System of representing numbers devised by the ancient Romans. The numbers are formed by combinations of the symbols I, V, X, L, C, D, and M, standing, respectively, for 1, 5, 10, 50, 100, 500, and 1,000 in the Hindu-Arabic numeral system. Natural numbers mean no negative numbers and no fractions, i.e. the whole numbers from 1 upwards: 1, 2, 3, and so on. Here is source code of the C program to convert natural numbers to Roman Numerals. It compiles and runs on any operating system. #include <stdio.h> void predigit(char num1, char num2); void postdigit(char c, int n); char romanval[1000]; int i = 0; int main() { int j; long number; printf("Enter any natural number: "); scanf("%d", &number);