Skip to main content

Java Program To Implement Self-Balancing Binary Search Tree.

import java.util.Scanner;

class SBBSTNode {
SBBSTNode left, right;
int data;
int height;

public SBBSTNode() {
left = null;
right = null;
data = 0;
height = 0;
}

public SBBSTNode(int n) {
left = null;
right = null;
data = n;
height = 0;
}}

class SelfBalancingBST {
private SBBSTNode root;    

public SelfBalancingBST() {
root = null;
}

public boolean isEmpty() {
return root == null;
}

public void clear() {
root = null;
}

public void insert(int data) {
root = insert(data, root);
}

private int height(SBBSTNode t ) {
return t == null ? -1 : t.height;
}

private int max(int lhs, int rhs) {
return lhs > rhs ? lhs : rhs;
}

private SBBSTNode insert(int x, SBBSTNode t) {
if (t == null)
t = new SBBSTNode(x);

else if (x < t.data) {
t.left = insert( x, t.left );

if (height( t.left ) - height( t.right ) == 2)
if (x < t.left.data)
t = rotateWithLeftChild( t );

else
t = doubleWithLeftChild( t );
}

else if (x > t.data) {
t.right = insert( x, t.right );

if (height( t.right ) - height( t.left ) == 2)
if (x > t.right.data)
t = rotateWithRightChild( t );

else
t = doubleWithRightChild( t );
}

else
;  // duplicate; do nothing
t.height = max( height( t.left ), height( t.right ) ) + 1;
return t;
}

private SBBSTNode rotateWithLeftChild(SBBSTNode k2) {
SBBSTNode k1 = k2.left;
k2.left = k1.right;
k1.right = k2;

k2.height = max( height( k2.left ), height( k2.right ) ) + 1;
k1.height = max( height( k1.left ), k2.height ) + 1;
return k1;
}

private SBBSTNode rotateWithRightChild(SBBSTNode k1) {
SBBSTNode k2 = k1.right;
k1.right = k2.left;

k2.left = k1;
k1.height = max( height( k1.left ), height( k1.right ) ) + 1;
k2.height = max( height( k2.right ), k1.height ) + 1;
return k2;
}

private SBBSTNode doubleWithLeftChild(SBBSTNode k3) {
k3.left = rotateWithRightChild( k3.left );
return rotateWithLeftChild( k3 );
}

private SBBSTNode doubleWithRightChild(SBBSTNode k1) {
k1.right = rotateWithLeftChild( k1.right );
return rotateWithRightChild( k1 );
}

public int countNodes() {
return countNodes(root);
}

private int countNodes(SBBSTNode r) {

if (r == null)
return 0;

else {
int l = 1;
l += countNodes(r.left);
l += countNodes(r.right);
return l;
}}

public boolean search(int val) {
return search(root, val);
}

private boolean search(SBBSTNode r, int val) {
boolean found = false;

while ((r != null) && !found) {
int rval = r.data;

if (val < rval)
r = r.left;

else if (val > rval)
r = r.right;

else {
found = true;
break;
}

found = search(r, val);
}
return found;
}

public void inorder() {
inorder(root);
}

private void inorder(SBBSTNode r) {
if (r != null) {
inorder(r.left);

System.out.print(r.data +" ");
inorder(r.right);
}}

public void preorder() {
preorder(root);
}

private void preorder(SBBSTNode r) {
if (r != null) {
System.out.print(r.data +" ");

preorder(r.left);
preorder(r.right);
}}

public void postorder() {
postorder(root);
}

private void postorder(SBBSTNode r) {
if (r != null) {
postorder(r.left);

postorder(r.right);
System.out.print(r.data +" ");
}}}

public class BSTTest {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);

SelfBalancingBST sbbst = new SelfBalancingBST();
char ch;

do {
System.out.println("\nSelf Balancing Binary Search Tree Operations: \n");
System.out.println("1. Insert ");
System.out.println("2. Search");
System.out.println("3. Count Nodes");
System.out.println("4. Check Empty");
System.out.println("5. Clear Tree");
System.out.print("Enter Your Choice: ");

int choice = scan.nextInt();
switch (choice) {

case 1 :
System.out.print("Enter An Integer To Insert: ");
sbbst.insert( scan.nextInt() );
break;

case 2 :
System.out.print("Enter An Integer To Search: ");
System.out.println("Search Result : "+ sbbst.search( scan.nextInt() ));
break;

case 3 :
System.out.println("Nodes = "+ sbbst.countNodes());
break;

case 4 :
System.out.println("Empty Status = "+ sbbst.isEmpty());
break;

case 5 :
System.out.println("\nTree Cleared");
sbbst.clear();
break;

default :
System.out.println("Wrong Entry ");
break;
}

System.out.print("\nPost Order : ");
sbbst.postorder();
System.out.print("\nPre Order : ");
sbbst.preorder();
System.out.print("\nIn Order : ");
sbbst.inorder();

System.out.println("\n\nDo You Want To Continue (Type Y OR N): ");
ch = scan.next().charAt(0);
} while (ch == 'Y'|| ch == 'y');
scan.close();

}}

Popular posts from this blog

Screenshots from Windows 1.01

Windows 1.0 is a graphical personal computer operating environment developed by Microsoft, released on November 20, 1985, as the first version of the Microsoft Windows line. Version 1.01 , also released in 1985, was the first point-release after Windows 1.00.   Screenshots from Windows 1.01: ⇰ Desktop  First Run Empty Desktop Desktop With Applications ⇰  Office Applications Notepad Text Editor Calculator Calendar Clock Address Book ⇰  Multimedia Applications Media player, CD player, Volume level, and Sound: This GUI doesn’t have these features. ⇰  Networking Applications Terminal Phone Dialer: This GUI doesn’t have this feature. ⇰  Internet Applications Browser, and Mail: This GUI doesn’t have these features. ⇰  Accessibility Applications Keyboard Map:  This GUI doesn’t have this feature. ⇰  Settings Desktop themes,  Display,  S...

C++ Program To Implement Casino Number Guessing Game.

#include <iostream> #include <string> #include <cstdlib> #include <ctime> using namespace std; void drawLine(int n, char symbol); void rules(); int main() { string playerName; int amount; int bettingAmount; int guess; int dice; char choice; srand(time(0)); drawLine(70,'_'); cout << "\n\n\n\t\tCASINO GAME\n\n\n\n"; drawLine(70,'_'); cout << "\n\nEnter Your Name : "; getline(cin, playerName); cout << "\n\nEnter Deposit Amount To Play Game : $"; cin >> amount;

Introduction To Algorithms, 3rd Edition

Before there were computers, there were algorithms. But now that there are computers, there are even more algorithms, and algorithms lie at the heart of computing. This book provides a comprehensive introduction to the modern study of computer algorithms. It presents many algorithms and covers them in considerable depth, yet makes their design and analysis accessible to all levels of readers. In this book, the authors tried to keep explanations elementary without sacrificing depth of coverage or mathematical rigor. Each chapter presents an algorithm, a design technique, an application area, or a related topic. Algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The book contains 244 figures — many with multiple parts — illustrating how the algorithms work. It also includes careful analysis of the running times of all algorithms. In this third edition, the entire book once again updated including changes cove...

C++ Program To Implement Student Report Card System.

#include<iostream> #include<fstream> #include<iomanip> #include <cstdlib> using namespace std; class student { int rollno; char name[50]; int p_marks, c_marks, m_marks, e_marks, cs_marks; double per; char grade; void calculate(); public: void getdata(); void showdata() const; void show_tabular() const; int retrollno() const; }; void student::calculate() { per=(p_marks+c_marks+m_marks+e_marks+cs_marks)/5.0; if(per>=60) grade='A'; else if(per>=50)  grade='B'; else if(per>=33) grade='C'; else grade='F'; }